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Nomenclature
E = Young’s modulus
ekl = strain tensor
I = area moment of inertia
L = length
£ = Laplace transform
P = load
Tkl = stress tensor
NTkl = £fTkl g
v.x; 0; t/ = tip de� ection of beam
Nv.x; s/ = £fvg
x = longitudinal axis of beam
°1; °2 = constants appearing in Eq. (8)
±i j = Kronecker symbol, 0 if i 6D j , 1 if i D j
¸e, ¹e = Lamé constants (elastic)
¸.s/, ¹.s/ = functions of the Laplace transform parameter s
¸v , ¹v = viscoelastic material constants
¿1; ¿2 = relaxation times

Introduction

A PROGRAM is being conducted to study and predict the vis-
coelastic behavior of composite materials. This study has

evolved due to the concern associated with composite ship struc-
tures’ performance in the event of � re. In this Note, the cor-
respondence principle (CP) is utilized for two types of beams
(homogeneous and laminated), to predict the de� ections of vis-
coelastic structures. The main aim is to have viscoelastic solutions
that can be compared with the experimental results to determine the
viscoelastic parameters.

Eringen1 has given a lucid account of the CP, also known as
the correspondence rule. This principle has been used by Lee2 for
isotropicmaterials without temperatureand by Biot3 for anisotropic
materials. Schapery4 produceda detailedanalysis in which the prin-
ciple is used to correlatethe viscoelasticpropertiesof compositesin
terms of the constituentproperties.For this study, the Kelvin–Voigt
model is utilized instead of the Boltzman superposition principle
that is used in Ref. 4. The Kelvin–Voigt model has been chosen for
its simplicity in that only two viscoelastic parameters need to be
determined.
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Palmer et al.5 conducteda study to developanalyticaltools to pre-
dict the elevated temperature response of composite structures.The
viscoelasticpropertieswere then extrapolatedor estimatedbyexper-
imental tests. Ha and Springer6 conducted a study to determine the
time-dependentviscoelasticstress–strain relationships.Critch� eld7

used Zocher’s8 applicationof the CP to generate curves that will be
comparedto the analyticalresultsof this study.Because the material
system for this program will be equivalent to the system used by
Palmer et al.,5 the same constants and data are used for validation
and comparison purposes.

In comparison to previous studies, the most distinctive feature of
this study is to obtain the material constants of viscoelasticand lay-
ered viscoelastic materials by simple experiments. For example, if
simple cantileveredand sandwich beamexperimentsare performed,
then a plot of the experimentalde� ection with time can be obtained.
By the use of the methodology described, the theoretical plots can
also be generated for the same structure. The two plots can then
be compared, and the viscoelastic parameters can be extracted by
determining the constants that allow the theoretical curve to best � t
the real data. At this time, research is under way to devise a simple
trial and error method to accomplish this task.

Analysis
In this Note, our purposeis to use the CP to solve simple problems

to expose the material constants and to determine their numerical
values by comparisonwith the experimentalresults.The theoremof
correspondence1 is simply stated as follows:For problems concern-
ing linear viscoelastic solids the solutions with time independent
boundaries can be obtained from the solutions of corresponding
problems in elasticity. Because of its simplicity, the problem of a
homogeneous cantilevered beam was � rst considered. The second
problem of a laminated cantilevered beam was addressed due to
its frequent use in composite ship structures. In each problem, the
Kelvin–Voigt model of viscoelastic behavior has been used.

Problem 1: Homogeneous Cantilever Beam
The classical solution for a cantilever beam is

v.x; 0/ D .PL3=3EI/
£
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under the condition @v=@ x D 0 at x D 1 and y D 0. All quantities
are shown in Fig. 1. In terms of Lamé constants, the modulus E is
de� ned to be

E D ¹e.3¸e C 2¹e/

¸e C ¹e

(1)

According to the CP, the solution of a cantilever beam formed of a
homogeneous viscoelastic material is given by
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where Nv is the Laplace transform of v.x; 0; t/ for the viscoelastic
case, that is,

Nv D £[v] D
Z 1

0

e¡stv.x; 0; t/ dt
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Fig. 1 Homogeneous cantilevered beam.

The form of the functions ¸.s/ and ¹.s/ depends on the model to
be chosen to describe the viscoelasticbehavior. If the Kelvin–Voigt
model is chosen, then the constitutive equation is

Tkl D
³

¸e C ¸v

@

@t

´
err ±kl C 2

³
¹e C ¹v

@

@t

´
ekl (3)

where Tkl is the stress tensor and ekl is the strain tensor. Repeated
indices imply summation. Furthermore,¸v and ¹v are material con-
stants. Taking the Laplace transform of Eq. (3), we obtain

NTkl D .¸e C s¸v/ Nerr ±kl C 2.¹e C s¹v/ Nekl (4)

When Eq. (4) is compared with the standard model of Hooke’s law,
the following is obtained:

¸.s/ D ¸e C s¸v; ¹.s/ D ¹e C s¹v (5)

for a Kelvin–Voigt model. When Eq. (5) is substituted into Eq. (2),
the following quantities are introduced:

´e D ¸e

¹e
; ´v D ¸v

¹v

; ¿1 D ¹v

¹e
; ¿2 D 3¸v C 2¹v

3¸e C 2¹e
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; z D
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3 C 3´e

(6)

where ¿1 and ¿2 havedimensionof time. With thequantitiesas stated
in Eqs. (5) and (6) and substituted into Eq. (2), the inverse of the
transform is obtained.The load function P.t/ is described hereafter
for two cases: Case 1 is where

P.t/ D P D const

Thus, NP.s/ D P=s. Case 2 is where

P.t/ D
»

P D const; 0 · t < tm

0; t > tm

Thus, NP.s/ D P.1 ¡ e¡stm /=s.
For case 1 the inverse transform is

v.x; t/ D kPF1.x; t/; k D L3=3I (7a)

where
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(7b)

For case 2 the solution (7a) is valid for t in the range 0 < t < tm ,
whereas for t > tm ,

v.x; t/ D kPF2.x; t/ (7c)
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From Eq. (7), it is observed that for a Kelvin–Voigt viscoelastic
model there are two unknown parameters, ¿1 and ¿2.

Now that the purely viscoelastic part of the solution has been
obtained,note that Eq. (7a) vanishesat t D 0, as it should.There may
already be a displacement in existence that is not equal to zero. To
includethispartof the solution,it is recalledthat fordisplacementsin
linear elastic solids,which are governedby linearpartialdifferential

Fig. 2 De� ection history for the homogeneous cantilevered beam.

Fig. 3 Laminated composite beam.

equations, that is, the Navier equations(for example, see Eringen1 ),
a constant multiple of Eq. (7) added to a constant is also a solution.
Thus, a linear combination of Eqs. (7a) and (7b) is

v.x; t/ D kP[1=E C °1 F1.x; t/ C °2 F2.x; t/]

where k D L3=3I (8)

Becauseof the introductionof theparameters°1 and°2 , thecomplete
solution depends on � ve parameters: ¿1; ¿2; z; °1 , and °2. If °2 D 0,
then the solution of Eq. (8) is applicable for P D const.

As a veri� cation of solution (8), the results of Critch� eld7

have been taken as the values of the following parameters:
P D 10 lb (44.5 N), L D 60 in. (1.52 m), w D 6 in. (0.152 m),
2c D heightD 1 in. (0.0254 m), E D 30E6 psi (206.8E9 Pa),
º D 0:3, ¿1 D 15 s, ¿2 D 10:5 s, and r D 0:7. The values of ´e and
z by using º D 0:3 are, respectively,

´e D
2º

1 ¡ 2º
; z D

1 C ´v

1 C ´e
D

[.2 C 3´e/r C 1]

3 C 3´e

As discussed in the Introduction, the viscoelastic parameters can
be found by � tting the analytical data to the experimental data.
When °1 D 1:64E¡8 psi (0.11E¡3 Pa) and °2 D 17E¡9 psi
(0.12E¡3 Pa) are chosen, the analytical curve generated from
Eq. (8) compares very favorably to the experimentalcurve obtained
from Ref. 7, as shown in Fig. 2.

Problem 2: Laminated Cantilevered Beam
Figure 3 shows a laminatedcantileveredbeamcomposedof a total

of four plies.For this initial study, the transverseshear effectsare not
considered. It is acknowledged that shear effects play a signi� cant
role in composite sandwich beams, especially those containing low
shear stiffness cores. Because the demonstrationof the basic use of
the CP is the main focus of this study, the shear effects are ignored.
Future work in which the analyticalcurvemust be � tted to the actual
experimental data will include the transverse shear effects.

As has been described by Gibson,9 for four laminated symmetri-
cally oriented plates, the effective modulus E f for N D 4 is given
by

E f D 1
8 [E1 C 7E2]



AIAA JOURNAL, VOL. 40, NO. 9: TECHNICAL NOTES 1909

Fig. 4 De� ection history for laminated cantilevered beam.

which, in terms of Lamé constants, is

E f D 1
8
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¶

When the preceding procedure is followed and the CP used, the
de� ection at x D 0 is given as
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where d is a constant and g.s/ and p.s/ are polynomials. The
constants ®k are the roots of p.s/ D 0 with ®1 D 0. For a sample
calculation (using properties obtained from Ref. 5, with the sub-
script 1 representing the compositeproperties and 2 being the balsa
wood properties), the solution is shown in Fig. 4: E1 D 4E6 psi
(27.6E9 Pa), E2 D 10E3 psi (68.9E6 Pa), º1 D 0:14, º2 D 0:011,
¿11 D 5 s, ¿12 D 2:5 s, ¿21 D 1:0 s, ¿22 D 0:5 s, and °1 D 1:667E¡8 psi
(0.11E¡3 Pa).

Conclusions
A study has been undertaken to determine the viscoelastic

parameters by using the CP. The CP was applied to the elastic solu-
tion for the de� ection of a cantileveredbeam to obtain the resulting
viscoelasticequation.The Kelvin–Voigt model was then used to ex-
press Lamé constants in terms of the viscoelastic parameters. The
equation was Laplace transformed to express the de� ection equa-
tion in terms of length and time. The resulting equation was then
plotted and adjusted to � t curves obtained from previous studies.5;7

From the curve � tting, the viscoelastic parameters were extracted.
Further work in this area will produce experimental results that

will be used to determine the viscoelastic constants, and these will
then be con� rmed by the use of the CP. The main attraction of this
method is that the extracted viscoelastic constants are determined
only once and then can be used in the analysisof more complicated
structures as long as the same material system is used.
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I. Introduction

T URBULENT � ows are known to be sensitive to streamline
curvature. It is also clear that linear eddy-viscosity turbulence

models (EVMs) are completely insensitive to the effects of stream-
line curvature.On the other hand, differentialReynolds stress mod-
els (RSMs) are able to capture these effects. However, RSMs have
notbecomea standardtool in practical� uid-� owsimulations,owing
to theircomplexity,largecomputationalwork load,and typicallyun-
favorableeffect on numerical stability.Therefore, explicit algebraic
Reynolds stress models (EARSMs) have become increasinglypop-
ular during recent years.EARSMs are two-equationmodels sharing
much of the computational manageability of the EVMs while par-
tially retaining the more realistic physical backgroundof the under-
lying RSM. However, the sensitivity to the streamline curvature is
partially lost through the weak-equilibriumassumption invoked to
derive algebraic RSMs. It has been shown by several authors that,
in principle, this de� ciency can be alleviatedby assuming the weak
equilibrium in a suitable curvilinear stream-following coordinate
system.

The algebraic RSM (ARSM) formulation for curved � ows will
be revisited. This is to show how the weak equilibrium assump-
tion can be invoked in a suitable curvilinear coordinate system to
minimize approximately the resulting error for curved � ows. Such
approximationsare proposed in the literature based on the rotation
rate of 1) the velocity vector,1 2) the acceleration vector,2;3 and
3) the principal system of the strain-rate tensor.3¡6 The � rst ap-
proach is, in principle, not fully generalizablebecause of its lack of
Galilean invariance.

The purpose of this Note is to show that the accelerationmethod
is also generally invalid. The observed singular behavior of the ac-
celeration method is discussed in general, and its failure is numer-
ically demonstrated in a plane duct � ow including a 180-deg bend
with a small radius of curvature.7;8 The behaviorof the acceleration
method will be compared with that of the strain-rate and velocity-
based methods.

Received 21 December 2001; revision received 29 April 2002; accepted
for publication13 May 2002.Copyright c° 2002by the American Instituteof
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay
the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923; include the code 0001-1452/02 $10.00 in
correspondence with the CCC.

¤Research Scientist, Laboratory of Aerodynamics, P.O. Box 4400;
Antti.Hellsten@hut.� . Member AIAA.


